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ABSTRACT

This paper investigates the existence of positive solutions for a sixth-order m-point
boundary value problem with three variable parameters. Many problems in the the-
ory of elastic stability can be handled by the method of multi-point problems. By using
the fixed point theorem and operator spectral theorem, we give a new existence result.
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1 Introduction

Boundary-value problems for ordinary differential
equations arise in different areas of applied mathemat-
ics and physics and the existence and multiplicity of
positive solutions for such problems has become an
important area of investigation in recent years; we re-
fer the reader to [1-15] and the references therein. For
example, the deformations of an elastic beam in the
equilibrium state can be described as a boundary value
problem of some fourth-order differential equations.

Multipoint boundary value problems for ordinary
differential equations arise in a variety of areas of ap-
plied mathematics and physics. For examples, the
vibrations of a guy wire of a uniform cross-section
and composed of N parts of different densities can be
set up as a multi-point boundary value problem; also
many problems in the theory of elastic stability can
be handled by the method of multi-point problems. In
2006 Ma [3] studied the existence of positive solutions
for the following m-point BVP of fourth order

u® (t) 4+ BuP (1) — au(t) = f(t,u(t), 0<t<1
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m—2 m—2
u(0) = aiu(&), u(l) = Z biu(&;)
= s
u?(0) = a u(2)(§i biu (2)

where a, 8 € R, & € (0,1),a;,b; € [0,00) for
i € {1,2,...,m — 2} are given constants satisfying
some suitable conditions.

Recently, Zhang and Wei [4] established the exis-
tence result of positive solution for the fourth-order
boundary value problem with variable parameters as
follows:

u® + Btu” — Aft)u(t) = f(t,ult)), 0<t<1
m—2 m—2
= Z CL7U(€Z), U(l) = bbu(&)
=1 1=1
m—2

Z biu® (¢

i=1

m—2
u?(0) = 3 aiu®(&)
i=1

It is well known that the deformation of the equilib-
rium state, an elastic circular ring segment with its two



ends simply supported can be described by a boundary
value problem for a sixth-order ordinary differential
equation:

u® + 20 4@ = f(tu), 0<t<1
u(0) = u(1) = u®(0) = v (1)
= u(0) = u¥ (1) =0,

However, there are only a handful of articles on this
topic. See, for example [5-7].

In this paper we shall discuss the existence of posi-
tive solutions for the sixth-order boundary value prob-
lem

(2)

—u® + A u™ + B)u® + C(t)u = f(t,u,u )

(D

m—2

D

a;u®=2(g), i =1,2,3.
1
. (2)

biu®=2(g), i =1,2,3.
1
where A(t), B(t),C(t) € C[0,1].
generalize those established in [3, 4].
For this, we shall assume the following conditions
throughout:
(H1) £+ 0,1] x
continuous.
(H2) a = sup,¢(o 3 A(t) > —m2, a,b,c € R,
b= infte[o,l] B(f,) > 0,
¢ = sup¢po,1) C(t) <0,

u(2i—2) (0) —

o
Il

3

u(2i72) (1) —

.
Il

Our results will

[0,00) X (—00,0] — [0,00) is

7 +art — b2 +c¢>0.

Assumption (H2) involves a three-parameter non-
resonance condition.

We will apply the cone fixed point theory, combin-
ing with the operator spectra theorem to establish the
existence of positive solutions of boundary value prob-
lem (1-2). The paper is organized as follows. In Sec-
tion 2, we give some preliminary lemmas. In Section
3, we obtain an existence result for the boundary value
problem (1-2).

2 Preliminaries

Let Y = C[0,1], Yy = {u € Y : u(t) > 0,
t € [0,1]}. It is well known that Y is a Banach space
equipped with the norm ||ullo = sup;¢po 1) |u(t)|-

Set

X =3ue 0,1 : u®2(0) =

3 r—’H

no

aiu(2i—2) (57,)7 u(21’,—2) (1> —

I
i

-2

3

b2 (g), i =1, 2.}

=1
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For given ¥ > 0 and v > 0, we denote the
norm [ull, , by [[ullyy = supieou{lu® (@) +
X[uP @)+ viu@)|}, v € X. We also need
the space X equipped with the norm |-, =
max {[|ully, [|[u®]],,[|u®]|,} - In this Section, we
will show that X is complete with both the norms
and ||,

(R
Let

E={C?0,1]:u

I
it

= 3" b ).

Then F is a Banach space with a norm by

)(t)], YueE.

Jull = mas Juf?
tel0,1]

For h € Y, consider the following linear boundary
value problem:

—u® +au® +0u® feu=nt), 0<t<1 @3

u(0) = u(1) = u®(0) = u® (1) = u?(0)
@ 4)
=u'"(1) =0,
where a, b, ¢ satisfy the assumption
70 tar* —bn? +¢>0 )

and let I' = 7% 4 an* — br? + c. The inequality (5)
follows immediately from the fact that I' = 76 4-ar* —
br? + c is the first eigenvalue of the problem —u(%) +
au™® 4+ bu? + cu = M, u(0) = u(1) = u?(0) =
u@ (1) = u®(0) = u® (1) = 0 and ¢, (t) = sinzt
is the first eigenfunction, i.e. I' > 0.

Let P(\) = A2 + B\ — o where 3 < 272, a > 0.
It is easy to see that equation P(\) = 0 has two real

roots Ay, Ao = —hEy A VQBZH(X, with Ay > 0 > Ay >
—m2. Let A3 be a number such that 0 < A3 < —\a.
In this case, (3) satisfies the following decomposition
form:

d2
u® 4+ au™® + bu® 4 cu = (— + /\1)

dt?
d? d?
(‘dtz“2> ( @
It is obvious that @ = A1 4+ Xo + A3 > —72,b =
—A1A2 — AaA3 — A A3 > 0,c= A1z < 0.

(6)
+)\3>u, 0<t<l.

Lemma 1. [3]. Assume that (H2) holds. Then there
exists unique @;,;, 1 = 1,2, 3 satisfying



o + Aips =0,
wi(0) =0, (1) =1;

(2
{ " (w + )‘lwl =0, } respectively. More-

0)=1, ¥i(1) =0;
over, w; and V; are posztlve on [0,1].
Fori=1,2,3 set p; = ©,(0),

_ 1 [ eitwi(s), 0<t<s<1,
Gi(t’s)_pi{ pils)n(t), 0< s <t < 1. } ™

Then G;(t,s), (i = 1,2,3) are the Green’s func-
tion of the linear boundary value problem

—u® 4+ Nu=0, u(0)=u(l)=0.

We have the following several lemmas, which will
be used in the sequence:

Lemma 2. [3]. Let w; = \/|\i|, then G;(t,s)(i
1,2, 3) can be expressed by
(i) when \; > 0,
sinh w; ¢ sinh w; (1—s)
Gi(tv 8) =

w; sinh w;
sinh w; s sinh w; (1— t)

w; sinh w;
(ii) when \; = 0,
_J t1—-s),0<t<s<1
Gﬂdy_{sﬂ—ﬂ70<s<t<l}
(iii) when —%2 < \; < 0,

sinw;tsinw; (1—s)
Gi(t, S) = { i

Lemma 3. G,(t,s), ;,¥; (i = 1,2) have the follow-
ing properties:
(i) G;(t,s) > 0,Vt,s € (0,1);
(ii) Gi(t, s) < CiGi(s,s),Vt, s
(iii) G;(t, s) > 6;G;(t,t)G;(s,
(iv) 6;Gy(t, ) = ‘pza() wZ()
where C; =
Lifx = 0,
A < 0.
Denote

G(t,s) =

,0<t<s<1
,0<s<t<1

Wi
sin w; s sin w; (1—t)
w; sin w;

,0<t<s<1
,0<s<t<1f’

>
Il

Z bi(1— &)

Applying the similar method to the Lemma 2.2 in
[3], we can obtain the following lemma:

Lemma 4. [3]. Suppose that (H2) holds. Assume that
(H3) A < 0,
then for any g € C'[0, 1], the problem

—u® =gt),0<t <1

m—2
= Z aiu(fi)7
i=1
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has a unique solution

We can rewrite (8) the following form:

u(t)

/ 1 G(t,s)(—u®)ds + Ao (—u)t
0

—U(Q))(l —1)

and it is easy to see that:

u(2 /Gts

+ Bo(—u™®)(1 1),

)
+ Bo(

Wds + Ag(—uM)t

(10)

where u € X.

Lemma 5. One has that for all w € E, |ul
o ||u(2)H0 - Moreover, Vu € X, ||ull, < o |[u® ’ro
o? Hu(4)||0, where 0 = 1+ |Ag(1)| 4+ |Bo(1)].

Proof. Using (9) and Lemma 3, we have

INIA

u(t)] §/0 G(s,s)ds|u'®(s)|
+[Ao(1)[[u®® (s)] + [Bo(1)[[u®® ()]
< (1+ [Ao()] +Bo(1)) tllu't]|o
< olu®lo, te0,1]

and it follows that ||ul|, < o HU(Z)HO
can show that ||u(® || < o [[u®]|, .

. Similarly, one
O

Lemma 6. Let (H2) and (H3) hold, then X is com-
plete with respect to the norm ||-|,, ,, where the con-
stants x > 0, v > 0, and

(L+x+v)" <y < oI (1D

||'Hx,y X,V

which means that the norms |- ||, and ||-||
alent.

X,V are equiv-



Proof. Ttis easy to see that [|u||, , and [[u||, are both
norms on X by Lemma 5, so we only need to show
their completeness.

First we show that the norm |-[|, , is equivalent to
the norm ||u||, . In fact, Vu € X, t € [0,1],

[wO0] +x ]
< [« @, + v ot

<+ x+v)ully-

(8)] + v uto)

Thus [Jull, , < 1+ x+v)[ul,

Also Vu € X, t € [0,1], |[u™ ()
W@ ()| + x [uP ()] + v|u®t)] < Hu||w
[u®|, < llull,, <o®|ul, - By Lemma 5, we
have [|u®|, < o [u®], < o ull,,
o [u®ly < o2 [l < o llull,,
o2 ||lu||, , then (11) is obtained. Thus lully is equiva-
lent to Tu”X .-

Let us show that X is complete with respect to
the norm |lul|,. Let {u,} be a Cauchy sequence

<
and so

and [|ully <
. Hence ||u||, <

in X, ie. |lup —unlly “g)H
0
@ — ugfi)’ — 0, (n,m — o). So, there exist

u,v,w €'Y with ||u, —
ufh

U’HO HO — 07

- wH — 0, (n — o0) . Since {u, } C X, from
0

Lemma 4 we have forVu € X

/ G(t, s)(—ulP(s))ds (12)
+ Ao(— ))t+30( ) (1 =1)
and
20 = [ G o) )
+ Ag(—u{)t + Bo(—u{D)(1 - t).

Taking the limit in (12) and (13),

1
u(t) 7/0 G(t, s)v(s)ds+Ag(—v)t+Bo(—v)(1—t)

v(t) =
and so u®? = v and v(® = w.

Thus u € X, we have ||u, —ul, = 0(n — c0),
and so (X, |-||,) is complete. Now it follows that

(X, |[ll,) is complete from the completeness of
(X [1-ll) - O
Notation. Set
m—2 m—2
doawi&) Y an&) -1
Aj=| ma > . (4
> bigi(&) — 1Y iy (&)
i=1 i=1

- /0 G(t, s)w(s)ds+Ag(—w)t+Bo(—w)(1—1)
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Aj(g)
m—2 1 m—2
ai [ Gi(&,9)g(s)ds Y aiy;(&) —
_ 1 i=1 0 i=1
- _E m—2 1 m—2 )
’ b /0 Gyl€irlalehds 3 bivy ()
=1
15)
B;(g)
m— m—2 1
. ; ait; (&) :/0 Gy (€0, 5)g(s)ds
T A | m=2 m—2 1 >
| meste) -1 b [ Gilennatsas
i=1 i=1
(16)
where j = 1,2, 3.
Remark 1. Forany g € Y, we have
[Ai(9) < [AiW)[lglly,  [Bi(g)l < [Bi(D)glly

where i = 1,2, 3.

In the rest of the paper, we make the following as-
sumptions:

m—2 m—2
(AD Y aith; (&) <1, ) bip; (&) < 1; j=1,2,3.

=1 i=1

Lemma 7. [3]. Let (H2), (Al) hold. Assume that
(H4) A; <0,¢=1,2,3.
Then for any g € C'[0, 1], the problem

—u? A u=gt),0<t <1

m—2 m—2
u(0) = Z a;u(&), u(l) = Z biu(&:)
i=1 i=1
has a unique solution
/G (499 + Al (o

Moreover, if g > 0, then u(t) > 0, t € [0,1].

Proof. The proof follows by routine calculations.
Since A; < 0, we have A;(9) > 0, B;(g) > 0,
i=1,2,3.

Define an operator 7; : Y — Y by

/Gts

(g)hi (),

(s)ds + Ai(g)pi(t)

(18)
i=1,23.



Using Lemma 1. and Lemma 3. we have
1
[(Tig)()] = ‘ /0 Gi(t,s)g(s)ds + Ai(g)pi(t)
Bila)i(0)

1
g&/Gm@®Mb
0

+ Ai(1) [lgllg i (t) + Bi(1) llgllo i (t)
<{C:D; + A;(1)E; + Bi(1)E} gl
= M; gl

fol Gi(s,s)ds, E; = maxyejoq)|@s ()|, and F;

maxyeo,1) [¥i ()]
Thus || T5g|, < M; ||gl|, , and so

IT) < M;, i=1,2,3. (19)
O
Notice that
—u® 4 au® + bu® 4 cu= < — ditz + /\1>
d? d2 0
(£ ) (- L n)umai

so we can easily get:

Lemma 8. Ler (H2), (H3), (H4) and (Al) hold. Then
forany h € Y, the problem:

—u(® + au™® +bu® +cu=h(t),0<t <1 1)

u?=2(0 Zau(2’ D), i=1,2,3
i=1 (22)
w21 Zbu2’2§z,z‘:1,2,3

has a unique solutlon

/// G3(t,v)Ga(v,7)G1 (7, 8)h(s)dsdrdv
// G (t, 0) G2 (v, 7)[Ar (h)p1(7)
+ By(h)1(7)t]drdv

/ Gyt 0)[As(T1 (1)) (v)
+ Ba(T1(h))ba(v)]dv + Az((T2T1)(h))es(t)

+ B3((T2T1)(h))¥s(t), te[0, 1]
(23)
where
/Glts (s)ds + Ay (h)p1(t) 24)
+ Bi(h)ya(t)

54

and
(ToTy)(h // Gao(t, 7)G1 (7, s)h(s)ds
+ A1 (h)e1(7) + Bi(h)ya(T)dr (25)
+ A2(T1(h))p2(t)
+ Ba(T1(h))a(t)

where G;, A;, B;,i = 1,2, 3 are defined as in (7), (15)
and (16). In addition, if h > 0, then u(t) > 0, t €
0,1].

Define an operator T :' Y — Y by

(Th)(1) = (TTT)(R)()

/// Gy (t,0)Ga(o, 7)

G1(T, s)h(s)dsdrdv
1,01
+/0/0 G3(t,v)Ga(v, 7)[A1(h)p1(T)
+ By (h)y1 (7)]drdv
/ G3(t,v)[A2(Th(h))p2(v)

(
+ Ba(T1(h))2(v)]dv
+ A3((T2T1)(h))ps(t)
+ B3((T2T1)(h))vs(t)

where Ty (h)(t) and ToTy(h)(t) are defined by (24)
and (25) respectively.

(26)

Lemma 9. Suppose (H2), (H3), (H4) and (Al) hold,

then T 'Y — (X, ||lul,, ) is linear completely
continuous where x = A1 + A3, v = A3 and
1T < Ma.

Proof. The proof of complete continuous is similar to
the proof of Lemma 2.8 in [4], so we omit it. Next we
will show that ||T|| < M. Assume that b € Y and
u = Th is the solution the boundary value problem
(21-22). Tt is clear that the operator 7" maps Y into X.
Using (20) it is easy to see that

+)\u—//G (t,v)G(v, T)h()dr

+ Ak (h)er(v) + Br(h) i (v)dv
+AJ’(Tk(h)) @ (t) + Bj(Tk(h));(t),

27)

and
— (i 2)u® + N\ u
- /U Galt () + Ar(er(t)  8)
+ Bi(h)ir(t),

where i, j,k =1,2,3and i # j # k.

We will now show || T'hl|, , < M [|h],,Vh €Y,
where x = A1 + A3 > 0,v = A\ A3 > 0. For this,



Vhe Y., letu=Th,and by Lemma3,u € X NY,.
The equality (27) with the assumption Ay < 0 implies
that «® < 0. Similarly, the equality (28) with the
assumptions A + A3 < 0 and A2 A3 < 0 implies that
u® > 0.

From 28) with x = A1 + A3 > 0, v = M A3 >0
and u > 0, u® <0, u™® > 0 we immediately have

2 (1)) + vlu(t)]
()\1 + /\3) @) + A A3u

/GQtU

+ Ba(h)a(t).

Forany h € Y,let h = hy — ha,u1 = Thy,us =
Thy, where hq, ho are the positive part and negative
part of h, respectively. Let w = Th, then u = w1 —us.
From the above, we have u; > 0, u<2) < 07u2(-4) >
0,7 = 1,2, and the following equahty holds:

[ ()] + x|ul
O

(29)

v)dv + Aaz(h)pa(t)

[ (0 + O+ 3) [ (©)] + A Xg s ()]

1
= / Gg(t, v)hi(v)dv + Ag(hz)gﬁg(t) (30)
0
+ Ba(hi)2(t) = Toh
So, by (30), we have
@ ()] + (A1 + As)[u® (#)] + M As|u(t)|
= [ufV () —u$? ()] + O + Aa)[ul (1) — u$? (8)]

A Aslua (8) — uz(t)] < (Juf?(2)]
+ (O + Ag) [P ()] + A Aslua (1))
+ (Jus @1+ O+ 20)lus” O] + Mslua(t)])

= Tohy + Tohy = T|h| < (CoDy + As(1)Es
+ Bao(1) o) [[|Alllg = M2 [|All, -

Thus ||Th[, , < Ma|h|,, and so ||| < M.
O

Lemma 10. Ler f,, : (0,1) — R be a sequence of a
continuously differentiable functions. If

) i f(z) = f(z) on (0,1) , and
n—oo
i) lim f, ()
n—oo
Sformon (0,1),
then f(x) is continuously differentiable on (0,1),
and for all z € (0, 1) we have

= p(x), where convergence is uni-

lim f,(z) =

n—oo

f(z).

We list the following conditions for convenience:

Leta,b,c € Rya = A\ + Xy + A3 > —72,b =
—AA2 — Aad3 — AMA3 > 0,c = AMAA3 < O
where Ay > 0 > Xy > —72,0 < A3 < —Xy and
70 +amt — b + ¢ > 0. Let a = sup,ep 1) A(t),
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b = inficjo1 B(t), ¢ = sup;ep 1) C(t). Let K =

maxogtgl [ Ait) ( ) C(t) ( a‘i;bL_ C)]7
_ .6 = o

I = 7% + an? — b +cF1—m’

L1 = M1M2M3Ka L= KMz'

3 Main results

Theorem 1. Assume that (Hs),(Hs),(Hy)
(A1) hold, and L < 1, Ly < 1. If

t
lim  inf min M >T
lul+|v|—0+  te[0,1] |u| + |v]

and

and

ft u,v)

<I
|v]

lim sup max sup
[v]—o00 t€[0,1] 4 [0,00)

then BVP (1-2) has at least one positive solution.

Proof. Step 1. We consider the existence of positive
solution of (1-2) (the function v € C%(0,1) N C*[0, 1]
is a positive solution of (1-2), if u > 0, ¢t € [0,1],
and u # 0). Consider the following boundary value
problem:

—u® +au® + ou® 4 cu = —(A®t) - a)u® 1)
—(B(H) =b)u” = (C() = ) u+h(),
21 2) Zau(2z2 i7i:1a273
(32)
u(21 2)

z:bu(22 2) (&), i=1,2,3.
i=1
For any u € X, let

a)u —(B(t)—b)u

Obviously, the operator G : X — Y is linear. By
Lemmas 5 and 6, Vu € X,t € [0, 1], we have

(2)

Gu=—(A(t)— —(C(t)—c)u.

(Gu)(t)] < [-A(t) + B(t) - C(t)
— (=a+b—)]llul2
< Killull2 < Ki0?|Jully

where

K, = max [—A(t) + B(t) —

te(0,1]

= Ct) = (-a+b—-c)],

= A+ A3 > 0,v = A\ A3 > 0. Hence ||Gul|, <
K ||ul, , where K = K;0? and so [|G|| < K. Also
u € C*[0,1)NC% (0, 1) is a solution of (31) iffu € X
satisfies u =T (Gu + h), i.e

weX,(I-TG) u=Th. (33)

Let L = MsK. The operator I — T'G maps X
into X. From ||T| < M, together with |G| <



K and condition MK < 1, and applying operator
spectra theorem, we find that (I — TG)_1 exists and
it is bounded.

Step 2. Let H = (I — TG) 'T. Then (33) is
equivalent to u = Hh. By the Neumann expansion
formula, H can be expressed by

H=(I+TG+ (TG)? +
=T+ (TG)T + (TG)’T +

+(TG)" +..)T
+(TG)"T +...
(34)

The complete continuity of 7' with the continuity
of (I — TG)~1 yields that the operator H : Y — X is
completely continuous.

VheY,,letu=Th,theu € XNY,,andu® <
0, u® > 0. Thus we have

(Gu)(t) = =(A(t) -
- () -

a)u® — (B(t) — b)u?
cu >0, telo,1].

Hence
VheY,,(GTh) () >0

and so (T'G) (Th) (t) = T (GTh) (¢t) > 0,t € [0,1].
By induction it is easy to see

€0,1. (35

Vn>1, h €Y, (TG)"(Th)(t)>0,t€[0,1]. (36)

By (34), we have

YheYy, (Hh)(t) =
+ (TG)*(Th)(t) +
+...>(Th)), te

and so H : Y+ —>Y+ﬂX
On the other hand, we have

(Th)(t) + (TG)(Th)(t)
-+ (TG)™(Th)(1)
0,1].

(37)

VheYs, (Hh)(t)
< (Th)(t) + [(TG)(Th)(t)

+ (TG P(Th)(#) + ... + [(TG)|™(Th
b <ALt L. )(Th)®)

1
= (T,

() (38

So the following inequalities hold:

(HR) (1) < = |(Th)y,

7 Ty

c€0,1]. (39

I(HR) g < (40)
Forany u € Y, NC?0,1], define Fu = f(t,u,u®).
By assuming (H) , we have that F' : Y, NC? [0, 1] —
Y, is continuous. It is easy to see that u € C*[0,1] N
C% (0, 1) being a positive solution of (1-2) is equiva-

lent to u € Yy N C?|0,
equation as follows:

1] being a nonzero solution

u = HFu. 41
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Let Q = HF. Obviously, Q : Y. N C%[0,1] —
Y, N C%[0,1] is completely continuous. We next
show that the operator () has a nonzero fixed point in
Y. NnC?0,1].

Step 3. From (31) we also have

d? d?
(—dtQ + /\1> < i /\3>
m—2
0) :Z(MVN&)’
s
:Zbivl (&)
Zazv(2) Ez
Zb Vl fl

where Vi (t) = ( dt2 + Ag)u. It is easy to see that

w(0) = Y2 amu(&), u(l) = S biu(€). So

the following boundary value problem

= Gu+h(t) (42)

(43)

—u (1) + Agu(t) = Vi(1), (44)
m—2 m—2
au(&), u(l) = Y bu(&)  (45)
i=1 i=1
can be solved by
u(t) = (TaV1)(t / Ga(7,5)Vi(s)ds 46)

+ A2 (Vi)ga(t) + Ba(Vi)¢ha(t).

Moreover from (42) using (46) we obtain

d? d?
< pTe) -l-)\) ( FTe] +>\3> i

0) = Z_ a;V1(&),

= GTyVi+h(t) (47)

=1
m—2
Vi(h) = > biVi(&)
;:_12 (48)
V20 = Y eV (&),
o
v =S 6P )

1=1

From eq. (47), we have

Vi(t) = TsT1(GToVh + h(t)).



On the other hand, V; € C?[0,1] N C*(0,1)

is a solution of (47-48) iff Vy(¢) satisfies Vi =
T3T1 (GT2V1 + h) s i.e
(I — TsTWGTo)Vi = T5Tyh. (49)

From HT3T1|| < Mng, ||T2H < Mg together
with ||G|| < K and condition M MoMsK < 1,
applying operator spectra theorem, we have that the
(- TngGT2)71 exists and it is bounded. Let L =
My MoMsK.

Let Hy (I — TngGT2)71T3T1 then (49) is
equivalent to V; = Hph. By the Neumann expansion
formula, H; can be expressed by

Hy = (I +T3TGTs + (3T GTy)?
.+ (GNGT)" +...) TsTy = T3Th
+ (T5TyGTy) 5Ty + (TsTyGTy)? T Ty
o+ (3T GT)  TsTy + .. ..

(50)

The complete continuity of 757; with the conti-
nuity of (I — T3T1GT3)~ " yields that the operator
Hy:Y — C?]0,1] is completely continuous.

By (50), we have Vh € Y,

(H1h)(t) = (T3T1h)(t)
+ (T3ThGT2)T5T1h) (1)
+ ((T3T1GTy)*T3Th)()
+ ...+ (T3TWGT)"T5T1h)(t)
+...> (T5T1h)(t), t€][0,1].

61y

andso Hy : Yy — Y, NC?[0,1].
On the other hand, we have Vh € Y, |

(Hih)(t) < (Th)(2)
+ (T GT) [(T3T1h)(t)
+ (TsTyGTy) |2 (TsTuh) (1)
+ .+ (BT GTR) || (T5Tyh)(t)
4. <(A+Li+.. . +LM+..)

(T5T1h)(1)
1

T1-1

(52)

(T3T1h)(1).

So the following inequalities hold:

1
(Hih) (1) < T T I(T5T1h) | » (53)
— L1

I(H

Moreover from (44) using (34) and (50) we obtain

1
1)l < 1L, I(TETR) - (54

u@ (t) = Mu(t) — Vi(t) = MaHh(t) — Hih(t) <0

where A2 < 0. Let E(t) = Gs(t,t).
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Let
P={ueE:u(t) >0, u(t)
> OE(t)|[ufo, —u®(t)
> ©:E(t)[[u®|lo, t € [0,1]},
where
010203
O=——-"""-(1-1L
ClCngNg( ),
o 5165 (—)\262@1 + ég)
2T M (7/\2010203]\[3 + 0103N4)’
N3 = Dy D3 + D3 [A3(1) + Ba(1)]

+ (A3(1) + Bs(1)) (D2 + A2(1) + B2(1)) ,
G1 = g3aga1 + g32 [A2(G1) + Ba(G1)]
+ [A3(G2) + B3(G2)]
[921 + A2(G1) + B2(Gh))),
Go = gs1 + A3(G1) + B3(Gy),
Ny = D3+ As(1) + Bs(1),

1 1
1-L'1-Ly )"

Step 4. It is easy to see that P is a cone in E.
Now we show QP C P. For Vu € P, let hy = Fu,
then hy € Y,. From (37), (Qu) (¢t) = (HFu)(t) >
(TFu)(t), t €[0,1]. From Lemma 3 for all u € P,
we have

M:max{

(TFu)(t
/ / / G3(t,0)Ga2(v, 7)G1(7, 5)(Fu)(s)dsdrdu
// Gs(t, v)Ga(v, 7)[A1 (Fu)pi (T)

+ By (Fu)yy (7)]dT + /0 G3(t,v)[As(T1(Fu))p2(v)
+ Ba(T1(Fu))p2(v)]dv + A3 (ToTi (Fu))ps(t)

+B3(T2T1(Fu))¢3( ) < 610203|:/ G3 ’U ’U)d :l

[/ GgwdT} U G (s, 5 Fu()d}
+010203{ / Gg(v,v)dv} { / G2(T,T)dr}

[Al(Fu) —&-Bl(Fu)} +010203[ / G (v, v)dv ]

U G (s, ) (Fu)(s)ds

+ Al(Fu) + Bl(FU):| + 010203 [A3(1)

[A2(1) + Ba(1



+ By(1)] {/01 Ga(r, 7)dr + As(1) + 32(1)4

- [ /0 (s, 8) (Fu)(s)ds + Ay(Fu) + Bl(Fu)]
— C1CyCs N, [ /O G (s 5) (Fu)(s)ds

A (Fu) + Bl(Fu)].

where T3 (h)(t) and T5T7 (h)(t) is defined by (24) and
(25) respectively.
Thus

1

/ G1(s, s)(Fu)(s)ds + A1 (Fu) + By (Fu)
0 1 (55)

2 m”TFUHO

Also from (40) and (55) we have

(Qu)(t) = (TFu)(t) =

516263Gs(t.1) [ /0 1 Gg(v,v)Gg(uv)dv}

. [ /0 Colr )G (7, T)dT} { /0 s, s)(Fu)(s)ds}
- 618285C (4, 1) [ /O a0, v)Gg(v,v)dv}

- [ /0 Galr )G T)dT] (A1 (Fu) + By (Fu)]

+ 6205Gi(t,1) [ /0 (0, 0)Ga(0, v)dv} [As(ex(F))

+ Ba(e1(F))] + 03G3(t, t)[As(e2(F)) + Bs(ez(F))]
> 010203G3(t,t)(g32931 + g32[A2(G1) + B2(G1)]
+ [A3(G2) + B3(G2)][g21 + A2(G1) + B2(Gh)]

1
: [/ G1(s,8)(Fu)(s)ds + Ay (Fu) + Bl(Fu)}
0
1

> Elt) ———
> 516203 E(t) G100 N

010203
C1C2C3N;
= OE()[Qullo,

T Fullo

> E(t) (1= L)|HFullo

1

where g;; = / Gi(v,v)Gj(v,v)dv, (i,j = 1,2,3,

0
1 # 7). So we have

(Qu)(t) > OE(1)||Qullo. (56)

Similarly, it is easy to see that

~(Qu? (1) 2 ©:EM)|(Qu)Plo. (57

Indeed, using (34) H can be expressed by

Hh=(I+TG+ (TG)?
+ .+ (TG)" +..)Th
=Th+TGTh+ ...+ (TG)*Th
+ ...+ (TG)"Th + ...
=T(Ih+ GTh + (GT)?h
+...+(GT)"h +...).

If we differentiate the right side of (34) with help of
(58), we have the following: Vh € Y,

(58)

T (Ih+ GTh+ (GT)?h+ ...+ (GT)"h +...)
=T h+T G(Th+ (TG)Th

+ . 4+ (TG)"Th+...)
<Th+T G(Th+ |TG|Th

+ . A TG Th+...)
<Th+TGA+L+...+L"+..)Th

/ 1 /
=T'h+ ——(T'G)Th.
ht 7= (T'G)Th

Then the series
T h+T GTh+T G(TG)Th
... +T GTG)"Th+...

converges uniformly on (0, 1).
Using Lemma 10, if we differentiate both sides of
(34), we get

(Hh) =T h+T GTh+ T G(TG)Th

, (59)
+...+TGTG)"Th+...
Similarly, using Lemma 10 it is also seen that
(Hh)® =T@h 4+ TAGTh + THG(TG)Th ©0)

+ .. +TOGTC)"Th+...,
because the series
TOh+ TAGTh + TPG(TG)Th
+ .. +TACTC)"Th + ...

also converges uniformly on (0, 1). If we differentiate
both sides of (59), we find (60).

Finally, we differentiate twice both sides of equa-
tion (26) with respect to ¢ in order to find 7@

(Th)® (1) = Xa(Th)(1)
1 .1
7/ / Gs(t, 7)G1 (T, s)h(s)dsdr
o Jo

- / Ga(t, )AL (h)pr (7) 61)

+ Bi(h)(7)]dr

— [A3(T1(h))ps(v) + Bs(T1(h))s(v)]
= Mo(Th)(t) — (T3T1h)(t)..



Using (60) and (61) we obtain

(HR)®) = Xo(HR)(t) — (H1h)(1)

where (Hh)(t) and (H1h)(t) is in (34) and (50), re-
spectively. Let h(t) = F(u), then we obtain

(Qu)P(t) = (HF(u))"®
= Ao (HF(u))(t) = (H1F(u))(1).

The proof of (57) is similar to the proof of (56), so
we omit it.

So, QP C P.

Step 5. Let dy = mini,<3 E(t), then dy > 0,
and let A = Ody. Thus Vu € P, u(t) > Ods [Jul|, =
Alully, te[5,3]-

By

lim  inf min (M

)> T,
lul+]v|—=0+  tef0,1] |u| + |v]

we can choose ¢ > 0 such that limj,|q|y|—o0+

inf miny o 1) ( ]Ici(ttlf\gl)) >T +e.

Then 37 > 0 such that f(¢,z,y) > (I +¢)(|z| +
lyl) t €1[0,1],0 < |z|+|y| < (¢ + 1)r. Let Q, =
{ueP: Hu(2)||0 <r}.Forany u € 09,, we have
H“(Q)Ho =70 <ut) < |ull, < orte(01),
and so f(t, u(t), u® (1)) > (T + &) (u(t) + [u? (1)),

€ (0,1). Let d3 = mini1,<3 Es(t), then d3 > 0,
and let 6 = ©,ds.

By |[u®(t)| > ¢ Hu(2)||0 = or,t € [, 3], it fol-
lows that

1
1

Fltu(t),u® (1)) > (T +e)(ult) + [u® (2)])
> (T +&)[u® ()]
>> (U + )6 u® o,
where ¢ € 1, 3].

Step 6. Now we shall prove inf,caq, ||(Qu)® ||
> 0. For any u € 092, by (37) we have

|@w®] > IQul,

()

> 2 (TFu) <1>

L[ o)

(s,u(s), u'®(s))dsdrdv

//%( )@mﬂ&mmm
+ By (f

Y1(7)]drdv

GgTS

2 /0 Gg<§,u)[A2(T1(f>>s02(v)
+ B2 (T1(f))¥2(v)]dv
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+ %AS(T2T1(f))903 (

N~ N
N~

+ l]3’3(T2T1(f)) 3 (

Gs(T 8)f (s u(s),u® (s

11
> 51525303 (2 2) M32M21

~

Ydsdrdv

3
1

G1 (s,8)f(s,u(s),u®(s))ds
11
> 515253G3 (2 2> m3aMol

Co(T' +¢)or > 0.

Therefore, inf,,c0, H(QU)(2)H0 > 0.

4[5 ore

(62)

Next we shall prove Vu € 09,.,0 < k < 1,Qu #

RU.

Suppose the contrary, that Jug € 02,0 < ko < 1,

such that Qug = koug. By (37) we get

uo(t) > rouo(t) = (Quo)(t) >
= T(f(t,uo(t), ul?

(TFuo)(t)
(t))), t €0,1].

Let vg = T(f(t,uo(t),ul?(t)). Then ug(t) >

vo(t) and v (t) satisfies the following BVP:

(6) + cw(4) + bvo + cvg

= flt,uo(®),uP(t), 0< t < 1.

(63)

Multiplying (63) by sin 7t and integrating on [0, 1]

together with

22 2) Zaz (27.2 Z L i=1,2,3

(22 2) Zb (2¢—2) &) 1_1,2,3
=1

and ug(t) > vo(t), we get

1
I‘/ sin wtvg (t)ds + w((b — an? — 1)
0

-2

3

(ai + b;)vo(&) + (am + 73)

NNg

—2
(a; + b;)
1

- / it Ftuo(t), ul? (t))dt.
0

3

o
Il

m—2
&) Z a; + b;) UO (&)
=1



It is easy to see that b—an? —7* < 0, ar+73 > 0,
and vo(&;) > 0,08 (&) < 0,v{Y (&) > 0, it follows:

1 1
F/ sin 7tvg (t)dt > / sint f (¢, ug(t), u(()z) (t))dt.
0 0

(64)
By f(touo(t),u$’(t)) > (T + e)(luo(t)] +

|ué2) ()]), t € (0,1), we have
1 1
I‘/ sin wtug (t)dt > I‘/ sin wtwvg (t)dt
0 0
1
Z/ﬁmﬁww®w9®W
0
1
> T+ 5)/ sins(|ug(t)| + |u((32)(t)|)dt
0

1
>+ 6)/ sin mwtug (t)dt.
0

1
Since/ sin msug(s)ds > 0, we have T’ > (I" + ¢),
0
a contradiction.
We obtain i(Q, 2., P) = 0.
Step 7. By limyy|— 400 SUPp MaXte(0,1] SUPye[0,00)
(M> < T'y, we choose 0 < ¢ < TI'; such that

[v]
. tu,
1im| | s 400 SUP MAX4e[0,1] SUPye(0,00) K |:f| U)) <

(I'y — €). Then 3Ry, for |y| > Ry, f(t,z,y) <
(Fl - 5/)\|y|a te [Oa 1]
Let M = sup(; . |y))e[0,1)x[0,00] x [0, Ro] / (£ %> ¥)-
Then

f(t,l',y) < (Fl _5)|y| +J/\Za

Vtel0,1], x €[0,00), |yl €0, 00).

Take R > max {r —} Putting

Or = {u e P: HU(2)H0 < R},

we next prove Yu € 00g, v > 1, vu # Qu.
Assume on the contrary that vy > 1, ug € 0Qg,

voug # Quo.
By (38) we get

ug(t) < vouo(t) = (Quo)(t) =

1 1
< ﬁ(TFUO)(t) < ﬁclczcﬂvs

(H Fug)(t)

[AlGlss Fwﬁ@ﬁkkAﬂFm@kBﬂFm@]

< OGNy (11 ) [, + ]

; G1 (s,8)ds + A1 (1 )—&-Bl(l)}

C1C203N1N3 2
< ?(Fl = &)l o

C,CyCs Ny Ns M
1-L

: i
=(1—-—=— —, tel0,1].
(1= ) Il + 3 t< o

Hence,

C1C2C3N1 N3
o (T = o)llug? o

C,CyCs Ny N3 M
1-L ’

l[uolly <

and using %HUBQ)HQ < |lug||lo we have

2) € 2) ]\//T
wéMsQn)Mnﬁrf (65)
_ 1—L
where '] = 0, CaCa N NG

M which is

By (65), we have R = HUE)Q)HO <
contradicts to R > g.Then 1(Q,Qr,P) = 1. In
terms of the fixed index theory, we have i(Q, 2., P) =
0, and s0 i(Q, Qg\Q, P) = 1. Thus BVP (1-2) has a
positive solution. This completes the proof. O
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