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Abstract 

The principles by which the acoustics can be mimicked in order to reduce or cancel the 

vibrational field are based on anti-sound concept which can be materialized by acoustic 

cloaks. Geometric transformations open an elegant way towards the unconstrained control 

of sound through acoustic metamaterials. Acoustic cloaks can be achieved through 

geometric transformations which bring exotic metamaterial properties into the acoustic 

equations. Our paper brings  new ideas concerning the technological keys for 

manufacturing of novel metamaterials based on the spatial compression of Cantor 

structures, and the architecture of 3D acoustic cloaks in a given frequency band, with 

application to architectural acoustics. 
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1. Introduction 

The paper discusses the technological keys for 

manufacturing of novel metamaterials based on the 

spatial compression of Cantor structures, and the 

architecture of 3D acoustic cloaks in a given 

frequency band, with application to architectural 

acoustics. The theory is simple and consists in 

transformation of an original domain with a given 

shape filled with a known material (in our case an 

alternative layer of piezoelectric ceramics and epoxy 

resin following a triadic Cantor sequence) into a final 

domain, by applying a specific geometric 

transformation. The final domain will have a desired 

shape and will be filled with a new desired material, 

strongly inhomogeneous and anisotropic. This new 

metamaterial must be engineered at the 

subwavelength scale in order to imitate the exotic 

properties provided by the wave equations. The 

exotic properties of the metamaterial are ideal and 

complex, being real challenges to experimentalists, 

but not impossible to be fabricated. The current 

limitation on acoustic metamaterials is fabrication. 

Comprehensive technical reviews are available in [1-

6]. Our task is to propose a virtual robust simulation 

technology of manufacturing which could be applied 

in practice to low cost. This technology consists in 

developing of 3D Cantor helices of this material. 

These 3D structure are arranged on superposed 2D 

different size and shape lattices. The nanostructures 

can be fabricated via the approach based on direct 

laser writing into a photoresist positive tone followed 

by electrochemical deposition of Cantor helices [7]. 

 

2. Anti-sound and geometric transformations 

The sounds are mechanical vibration of the air and 

the ear is sensing the pressure and its gradient 

fluctuations. Two pressure fields arranged to overlap 

precisely with exactly opposite characteristics in 

waves can destroy by interfering the sound, 

producing a constant pressure which is the condition 

of silence. This silence can be viewed as the 

superposition of sound and anti-sound [6]. The same 

effect can be obtained bysurrounding the noise source 

by a cloak so that sound incident from anydirection 

passes through and around the cloak, making the 

cloak and the objectacoustically invisible.The 

materials required for constructing the cloak are 

exotic and they are not found in nature. Simply 

mathematics is necessary to understand the concept of 

geometric transformation which defines the type of 
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metamaterial required. The 3D acoustic equation for 

the pressure waves propagating in a bounded air 

region 
3R   is 


 

     


,             (1) 

where p  is the pressure,   is the rank-2 tensor of the 

fluid density,  is the compression modulus of the 

fluid, and  is the wave frequency.Let us consider the 

geometric transformation from the coordinate system 

( , , )x y z    of the compressed space to the original 

coordinate system ( , , )x y z ,given by ( , , )x x y z   , 

( , , )y x y z    and ( , , )z x y z   . The change of 

coordinates is characterized by the transformation of 

the differentials through the Jacobian xxJ  of this 

transformation, i.e. 

d d

d d

d d
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x x

y J y

z z



   
   
   
      

, 
( , , )

( , , )
xx

x y z
J

x y z





  
.             (2) 

 From the geometrical point of view, the change 

of coordinates implies that, in the transformed region, 

one can work with an associated metric tensor 
T

det( )

xx xx

xx

J J
T

J

 



 .                                      (3) 

In terms of the acoustic parameters, one can 

replace the material from the original domain 

(homogeneous and isotropic) by an equivalent 

compressed one that is inhomogeneous (its 

characteristics depend on the spherical ( , , )r     

coordinates) and anisotropic (described by a 

tensor), and whose properties, in terms of x xJ  , 

are given by 
T 1 det( )x x x x x xJ J J 

  
    , 

det( )x xJ 
   ,  (4) 

or, equivalently, in terms of xxJ   
T

det( )

xx x x

xx

J J

J

 




  , 

det( )xxJ 


  .         (5) 

Here,   is a second order tensor. When the 

Jacobian matrix is diagonal, (4) and (5) can be 

more easily written. Multiplying (1) by a test 

function    and integrating by parts, one obtains 

[6] 

 

 

1

( , , ) ( , , )

2 1

d

d 0,

x y z x y z p V

p V







    

    




    (6) 

In (6) the surface integral, corresponding to a 

Neumann integral over the boundary  , is 

zero. By applying the coordinate transformation 

( , , ) ( , , )x y z x y z    to (6) and using (2), one 

obtains 

 T 1 T

( , , ) ( , , ) det( )dx x x y z x x x y z xxJ J p J V

     



      

 2 1det( ) d 0,xxJ p V


       (7) 

in terms of  
xxJ  , and 
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    (8) 

in terms of 
x xJ  . 

 

3. Spherical acoustic cloak 

Our intention is to replace a material made from 

concentric homogeneous and isotropic layers situated 

in the original spherical domain by an equivalent 

compressed inhomogeneous anisotropic material 

described by the transformation matrix (3).Let us 

suppose that the original domain  is a sphere of 

radius 2R . The sphere consists of an alternation of 

concentric layers made from piezoelectric ceramics 

and epoxy resin, following a triadic Cantor sequence 

up to the fourth generation (31 elements). The 

original domain is a sphere of radius 2R , consisting of 

alternation of concentric layers made from 

piezoelectric ceramics and epoxy resin, following a 

triadic Cantor sequence (Fig.1b). After the 

transformation, the cloak contains a region 1r R  

filled with air and containing the noisy source, while 

the shell 1 2R r R   is filled by the nonlinear 

transformed material.  

 
Fig. 1: (a) Sketch of spherical cloak surrounding a 
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noisy machine; (b) Cantor-like structure [1]. 

 

Next, the governing equations of this composite 

are written in the spirit of [9-12]. Thequasistatic 

motion equations and constitutive laws read as 

,i ij ju t  ,               (9) 

, 0i iD  , , 0.i e iE   (10) 

Here, indices p and e denote the piezoelectric (PZ) 

and non-piezoelectric (ER) materials, respectively,   

is the density, 
iu , 1,2,3i  , are the components of 

the displacement vector, 
ijt , 1,2,3i j  , are the 

components of the stress tensor,
iD , 1,2,3i  , are 

the components of the electric induction vector, 
iE , 

1,2,3i  , are the components of the electric field and 

e  is the electric potential, 
ij , 1,2,3i j  , are the 

components of the strain tensor,  ,   are the Lamé 

constants, 
p is the dielectric constant and 

p

ie 3 2 1( )p p pe e e  are the piezoelectricity 

coefficients.  The coordinate 
1x  is directed along the 

radial direction, 
3x  is directed along the 

circumferential direction, while 
2x  is located within 

the layer.  

2p p p

ij kk ij ij k k ijt e E         ,         (11) 

2e e

ij kk ij ijt        ,                       (12) 

p p

i i i kkD E e    ,           (13) 

, ,

1
( )

2
ij i j j iu u   ,         (14) 

The scalar elastic potential  , and the 

components 1 , 2 , 3 of the vectorial elastic 

potential, defined as 

1 ,1 2,3u    ,
2 1,3 3,1u   ,

3 ,3 2,1u    ,     (15) 

and the electric potential e , are expressed using the 

theta-function [12] 

1 2 3 0 1 2 3( , , , ) ( ) (log ( , , ))x x x t t x x x     ,   

1 2 3 0 1 2 3( , , ) ( ) (log ( , , ))i ix x x t x x x     ,  

1 2 3 0 1 2 3( , , ) ( ) (log ( , , ))e ex x x t x x x     .   (16) 

On adopting the hypothesis of the theory of Von-

Karman, the theta function   is the solution of the 

von Karman equation 
1 1 1 4

, , 0( ) 0p e p e

          ,   (17) 

where 
1/2E  , E  is the effective Young modulus 

of the composite, 
4 2

0 0/h D    , 0D  is the flexural 

rigidity of the plate,   its effective density, h  its 

thickness, 
1   and  the frequency. Eq. (3.9) can 

be factorized as a Helmholtz operator and an anti-

Helmholtz operator (i.e. with an opposite sign for the 

spectral parameter) 

2 2 2 2

0 0( )(( ) 0       ,                      (18) 

where for simplicity we have taken 1    . We 

write the Helmholtz equation in the coordinate system 

1 2 3( , , )x x x  as 

1 2 1( ) 0       .                   (19) 

Let us apply the concave-down transformation (2) 

and (3) to (17), which compresses the original domain 

  occupied by a sphere of radius 2R  into a shell 

region 1 2R r R   in the compressed space   , 

characterized by 
1 T 1

, ,( ) ( ) / det( )p e rr p r rr rrr J r J J 

  
    ,         

(20) 1 T 1( ) ( ) / det( )rr rr rrr J r J J 

  
    , /rrJ r r

   ,  

(21) 

In the new coordinates, the transformed equation 

(17) now reads as 
1 1 1 4

, 33 , 33 0( ) 0p e p e

             ,   (22) 

where 
1

,p e

  is the upper diagonal part of the inverse of 

  and 1

33

  is the third diagonal entry of 1 [13]. 

 The cloak has the inner radius 1 0.5mR  and 

outer radius 2 1mR  . After simulation [1], the 

absence of the scattering of waves generated by 

external source outside the cloak is observed in Fig. 

2. The waves are smoothly bent around the central 

region inside the cloak. The results reported show that 

the wave field inside the cloak, i.e. the inner region of 

radius 1R  which surrounds the noisy machine, is 

completely isolated from the region situated outside 

the cloak.  

The waves generated by a noisy source are 

smoothly confined inside the inner region of the 

cloak. The inner region is acoustically isolated and 

the sound is not detectable by an exterior observer 

because the amplitudes on the boundary vanish.  

The domain is an acoustic invisible domain for 

exterior observers. The waves generated by the 

exterior source outside the cloak do not interact with 

the interior field of waves. 

 

 
Fig. 2:Waves fields inside and outside the cloak [1]. 

 

A possible interaction or coupling the internal and 

external wave fields is cancelled out by the presence 

of the shell region 1 2R r R  filled with 

metamaterial. Hence we can conclude that the 
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concave-down spherical cloakslead to a smaller 

disturbance in the acoustic fields in both the inner and 

the outer spaces 2r R and 2r R , respectively. 

In this way, 3D omnidirectional acoustic cloaks 

can be constructed and the results are spectacular: 

outside of the cloak we do not hear anything like the 

noise source did not exist. Acoustic wavelengths have 

orders of magnitude larger than optical wavelengths, 

meters vs. microns, which makes the acoustic 

problem easier to be investigated. 

4. Vibrational regimes 

 

We start with the resonant vibration modes 

excited by applying an external electric field 
1 0

3 0exp(i )E E E t    on both sides of the plate 

with n   . If 
0E is increased above a threshold 

value 0

thE  5.77V the / 2  subharmonic generation 

is observed. In [14]the authors obtain in the Cantor-

like sample typical values of the lowest threshold 

voltages of 3-5V. The amplitude of waves is 

calculated at the surface of the plate as a function 

of
0E . Figs.3 and 4 show the displacements of the 

normal modes / 2  =0.332MHz, 0.550MHz and 

respectively of the subharmonic modes 

/ 4  =166MHz, 0.275MHz. Two kinds of vibration 

regimes are found: a localised-mode (fracton) regime 

represented in Fig.5 for / 2  =1.223MHz, 

1.964MHz and 2.340MHz, and an extended-vibration 

(phonon) regime represented in Fig.6 for / 2  = 

3.109MHz and 3.422MHz.  A sketch of the plate 

geometry is given on the abscissa (dashed, 

piezoelectric ceramic and white, epoxy resin. 

 

 
Fig.3: Amplitudes of the surface displacement of 

the normal mode / 2  = 0.332MHz and the 

subharmonic mode / 4  =0.166MHz 

 

The fracton vibrations are mostly localised on a 

few elements, while the phonon vibrations essentially 

extend to the whole plate. In the case of a periodical 

plate the dispersion prevents good frequency 

matching between the fundamental and appropriate 

subharmonic modes. For the homogeneous plate the 

mismatch / 2n   is due to the symmetry of 

fundamental modes with respect to x .  

Only symmetric odd n  can induce a 

subharmonic, but never / 2  coincides with a plate 

vibration mode.   

 

 
Fig.4: Amplitudes of the surface displacement of 

the normal mode / 2  = 0.550MHz and the 

subharmonic mode / 4  =0.275MHz. 

 

 

For a Cantor-like plate, we have obtained 

qualitatively the same result as in [15]: given a 

normal mode n , for excitation at n   , the value 

of the expected threshold
thE i. e. the ability of 

generating the / 2  subharmonic, is determined by 

the existence of a normal mode with: (i) small 

frequency mismatch / 2n  , and, (ii) large spatial 

overlap between the fundamental and subharmonic 

displacement field. 

 
Fig.5: The normal amplitudes for three localised 

vibration modes ( / 2  =1.223MHz, 1.964MHz and 

2.340MHz). 

 

 
Fig.6: The normal amplitudes for two extended 

vibration modes ( / 2  =3.109MHz and 3.422MHz. 

 

5. Virtual simulation of the metamaterial 

manufacturing 

The problem of manufacturing of novel 

metamaterial obtained by spatial compression from a 

Cantor structure, is solved in two stages. The first 

stage consists in virtual manufacture and architecture 

of a novel class of metamaterials based on Cantor 

structure.  

Recipe for novel metamaterials are the geometric 

transformations (1)-(3) and generation of 3D Cantor 
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helices as a superposition of 2D lattices (Fig.7). 

 

 
Fig.7: Generation of 3D Cantor helices. 

 

The central hypothesis of generation of 3D Cantor 

helices is that the superposition at the point Pof 2D 

different lattices is not a function of the smoothed 

(homogenized) mapping at the same point, but a 

function of the shape and size of the lattice over a 

certain characteristic volume centred at that point, the 

size of which is the characteristic length l 

/ 2

/ 2

( ( )),

1 1
( ) [ ( ) ( )] ( )d ,

2 2

l

l

F z

l l
z u z u z z s s

l l


  

       
(4)w

here 
3Xz   represents the modulation direction. 

 
Fig. 8: The workflow of the virtual manufacturing 

of the metamaterial 

 

So, we define the mean function of superposition 

as a certain averaging integral over the characteristic 

volume V  

1
( )

V

x dV
V

   ,                          (5) 

with  V a sphere of radius 2/l centred in the point P. 

We suppose the modulation law is sin(2 / )A z  . 

The condition of coherency of the superposition 

establishes that, at this location, lattices A and B have 

the same in-plane lattice spacing. Away from the 

layers where the function  attains a maximum, the 

structure relaxes towards its unstrained condition. The 

lattices are bounded by interfaces; therefore, the 

location of the minimum of the function   is at the 

lattice centre. The functional variation with respect 

toz is 

0

4
( ) (1 cos( )),

z
z


   


( ) ( )z z    , (6) 

where 0i  is the maximum value of  .  

The workflow of the virtual manufacturing of the 

metamaterial is presented in Fig. 8. Nanostructures 

can be fabricated via an approach based on direct 

laser writing into a positive-tone photoresist and 

electrochemical deposition of Cantor helices. 

 

6. Reconfigurality and variable geometry 

The structure and shape of the cloak are 

elaborated by using reconfigurability and variable 

geometry concepts [16, 17].The concept is different 

from anechoic coatings because in our case we get a 

wide frequency band for which the cloak creates a 3D 

spatial region, invisible to sound. 

Thereconfigurability and variable geometry concepts 

play an important role in modifying properties of 

acoustic cloaks.Two different cloaks surrounding a 

noise object are presented in Fig. 9. The cloak can be 

built as a complex chain of modules with different 

shapes, and the nanoscale physical processes are able 

to manipulate itsbehavior in air, water and earth. 

Also, it offers a good alternative for the development 

of reconfigurable cloaks with different geometric 

shapes and multiple functionalities.  

 
Fig. 9: Two different cloaks surrounding a noise 

object. 

 

The acoustic properties of cloaks can be easily 

changed by precisely manipulating of properties 

furnished by the wave equations.As a result, a 

number of innovative cloaks can be developed.  

 

7.  Passive and active cloaks  

Next, the passive and active cloaks for sound 

cancellation are considered on the base of nonlocal 

impendance coating extended reactions [18-21].  

Passive cloaking requires complex metamaterials 

in order to manipulate the wave motion around 

aregion, while active cloaking uses sources of sound 

to cancel the waves.Active cloaking is closely related 

to active noise control and anti-sound which reduces 

the radiating field or creates quiet regions in enclosed 

domains such as aircraft cabins.  



10 

 

 
Fig. 10: Typical configuration for eight active 

sources [19]. 

 

Active cloaking requires knowledge of the 

incident field in order to activate wave sources 

(sources must be non-radiating) that cancel the total 

field in a given region. In addition, the cloaked region 

is not completely surrounded by a single cloak and a 

small number of active sources are required. Typical 

configuration for eight active sources is presented in 

Fig. 10[21].The cloaking effect is independent on the 

location of the scatterers. 

 

8. Conclusions 

The paper is discussing the technological key for 

manufacturing of novel metamaterials based on the 

spatial compression of Cantor structures, and 

architecture of 3D acoustic cloaks in a given 

frequency band for application to architectural 

acoustics. The theory consists in transformation of an 

original domain with a given shape filled with a 

known material (in our case an alternative layer of 

piezoelectric ceramics and epoxy resin following a 

triadic Cantor sequence) into a final domain, by 

applying a geometric transformation.  Final domain 

will have desired shape and will be filled with desired 

material, inhomogeneous and anisotropic. Exotic 

properties provided by the wave equations are ideal 

and complex, being real challenges to 

experimentalists given that the current limitation on 

metamaterials is fabrication. The task is to develop a 

virtual robust simulation technology which could be 

applied to low cost. This technology consists in 

developing of 3D Cantor helices by superposing of 

2D lattices of different size and shape.  
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