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Abstract 

This paper will aim to presents the applications of a continuous-time parameter estimation 

method for estimating structural parameters of a real bridge structure. For the purpose of 

illustrating this method two case studies of a bridge pile located in a highly seismic risk 

area are considered, for which the structural parameters for the mass, damping and 

stiffness are estimated. The estimation process is followed by the validation of the 

analytical results and comparison with them to the measurement data. Further benefits 

and applications for the continuous-time parameter estimation method in civil engineering 

are presented in the final part of this paper. 
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1. Introduction 

Nowadays, most of the bridges build in Romania 

have exceeded their designed life span and are 

experiencing a loss in performance due to aging and 

due to the presence of aggressive agents. This 

decrease in performance of the constitutive materials 

has a direct effect on the serviceability of the bridge, 

[1]. Bridges are part of a transportation infrastructure 

network and play a major role in economic 

development and thus maintaining these structures 

safe and reliable for everyday use is very important, 

[2]. When a bridge becomes unavailable due to 

maintenance and /or repair actions this can lead to 

negative social and economic effects, [3]. 

The importance of assessing or evaluating the 

condition of existing bridges can be justified by the 

following main reasons, [1]: 

1.The increase in traffic densities that make traffic 

loads much greater than those for which the bridge 

was designed for; 

2. The deterioration or damage of the bridge 

structure can lead to a decrease its strength; 

3.Changes in design codes that have reduced the 

safety levels. 

The lack of a reliable maintenance framework for 

bridges has contributed to the deterioration of these 

structures over their years in service. In Europe a 

number of studies have been performed in order to 

collected data and check if the analytical and 

numerical models can correctly represent the 

structural behavior of existing damaged bridges, [1]. 

Early damage detection has direct implications in 

safety maintenance and keeping the bridges reliable 

for daily. Most of the current damage detection 

methods rely on visual or localized experimental 

methods, [4]. The inspections carried out on bridges 

often interfere with their operational conditions, [2] 

and they require that the location of the damage to be 

known a priori. Due to these limitations, these 

methods detect the damage on or near the surface of 

the bridge. 

The use of non-destructive test data in structural 

health monitoring SHM is regarded as an important 

field of study in model updating, structural evaluation 

and damage assessment, [5]. 

Non-destructive techniques NDT can be used as a 

mean to inspect bridge structures without disrupting 

or impairing its serviceability. The NDT techniques 

are based on based on comparing and analyzing the 

properties of the materials of the bridge and can be 

used to interpret the structural condition of the bridge 

by observing the change in its global behavior. One 
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method by which this can be achieved is by means of 

vibration test data, collected from sensor 

measurements, [6]. The vibration measurements can 

help identify changes in local stiffness, mass and 

damping and by observing these changes one can 

predict the response of the bridge in correlation with 

the measured data. The detected changes in the 

structural parameters are correlated with structural 

damage. 

 

2. Parameter identification in continuous-time 

domain 

System identification Sys-Id can be used in SHM 

of bridge structures as the process of finding a model 

based on dynamic input and output measurements. 

Some of the deficiencies present in the methodology 

of bridge health assessment in Romania could be 

resolved by applying the concepts of Sys-Id in SHM 

of road bridges with the help of mobile laboratories 

used for collecting data, [6]. 

A bridge system can be represented by means of a 

mathematical model described by either a differential 

equation system expressed in continuous-time, or 

either by different equation systems expressed in 

discrete-time respectively. It is important to 

development and use of an a priori model and this can 

be achieved by calibrating the models parameters, 

such as the stiffness, damping or modal parameters, 

in order to have a minimal difference between the 

initial model and the measured results, [7]. 

The dynamic behavior of a bridge structure can be 

described by a reduced model of the bridge. The most 

common used model in Sys-Id is the lumped 

parameter model, due to its simplicity. A n-degree of 

freedom structure can be described by the following 

linear differential equation, [8]: 

 

         M Z t + C Z t + K Z t = F t   (1) 

 

where M, C and K are the mass, damping and stiff-

ness matrices, of dimension n × n, Z(t) and F(t) are 

the displacement and force vectors respectively of 

dimension n × 1. 

Depending on the type of processes they describe 

a dynamic system model can either be a continuous-

time or a discrete-time process. The continuous-time 

models are described using derivatives or integrals 

while the discrete-time models are represented using 

algebraic approximations, [9]. 

By means of continuous-time models one can 

determine the physical parameters of a structure. A 

continuous time-model can be obtained either using 

an indirect approach or either by means of a direct 

approach. The indirect approach uses experimental 

measured data to estimate a discrete-time model and 

this model will be later transferred into a continuous-

time model. Using the direct approach one can 

determine a continuous-time model using discrete-

time data. The differential equations used to describe 

the system using the direct approach are represented 

in a linear regression form, as expressed by Eq  

(2). Discretization of a continuous-time model 

This process of approximation by discretization of a 

continuous-time model eliminates the complex 

continuous–time calculus, [10]. 
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where a and b are parameters of the model, z(t) and 

F(t) are the displacement and force vectors 

respectively. 

 

3. Poisson moment functional description 

The coefficients of the continuous-time lumped 

model can be estimated by pre-filtering the input data 

using a Linear Dynamical Operations LDO. By 

applying a LDO to Eq.  

(2) one obtains: 

 

 
     

2
d z t Tn

LDO = LDO φ t θ + LDO ε tn n n2
dt

  
 
  

  

(5) 

 

The Poisson Moment Functional PMF is a LDO 

that can help solve the derivative terms of the 

differential equations. This pre-filter can be used to 

determine the continuous-time parameters by using 

traditional parameter estimation methods such as 

Least Squares LS, Instrumental Variable IV etc., [11]. 

The PMF of k-order is represented by Eq.  (6): 

     
f

f

0

t
def

k k+1 ft=t
t

LDO = M = h λ,t -t dt    (6) 

where Mk is the PMF of k-order; hk+1, gamma kernel 

of k+1 order; λ, real pole value of the PMF; tf, final 

time; t, time. 

By applying the PMF pre-filtering approach to Eq. 

(5) one obtains: 
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and 
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Using the PMF method the differential equations 

that represent the bridge system, as expressed by Eq. 

(2) are reduced to an the algebraic form as shown in 

Eq. (7)- (9). 

 

4. Parameter estimation of a bridge pile using 

the PMF approach 

The PMF approach was used to estimate the 

structural parameters of a real size pile for a concrete 

road bridge. The chosen bridge, is locate in Iași 

municipality, in the Tudor Vladimirescu residential 

neighborhood. The reinforced concrete bridge 

consists of a single span superstructure, with a total 

length of 46 m. The superstructure is made up of 

concrete box girders that are joined together, with a 

total length of 13.2 m, that support 3 lanes of traffic. 

The superstructure is supported by concrete wall-type 

piles with a total height of 4 m, as shown in Fig. 2. 

 

 
Fig. 2. Longitudinal cross-section of the reinforced-concrete 

Tudor Vladimirescu bridge, Iași. 

 

The concrete used for the construction of the wall-

type piles is of C 30/37 grade, and its characteristics 

are presented in Table 1. 

 

Table 1 Material characteristics for concrete C 30/37 

Weight, 

ρ 

Modulus of 

Elasticity, E 

Moment of 

Inertia, I 

[kg/m
3
] [N/m

2
] [m

4
]  

2,548.5 33×10
9
 0.0704 

 

The analyzed wall-type pile was reduced to a 

lumped parametric model with 3-DOFs, as depicted 

in Fig. 2, and its structural parameters were estimated 

in continuous-time domain. 

The benchmark structural parameters for the wall-

type pile are presented in Table 2. 

 

Table 2 Structural characteristics for the 3-DOF wall-type 

pile 

Level 

 

Mass 

[kg] 

Damping 

[Ns/m] 

Stiffness 

[N/m] 

1 2.691E+04 5.478E+05 6.970E+09 

2 2.691E+04 1.937E+05 8.712E+08 

3 3.138E+04 1.871E+05 6.970E+09 

 

 

 

 

 

For structural parameters of the 3-DOF lumped 

parametric model were estimated using the PMF 

approach with the model being subjected to two Load 

Cases LC. For Load Case 1 LC1, the external forces 

have been determined using the seismic acceleration 

response of Vrancea 77 earthquake in EW direction, 

while the forces in Load Case 2 LC2 have been 

determined using the seismic acceleration response of 

the same earthquake but in NS direction. 

For LC 1 the input seismic force response is 

illustrated in Fig. 3 

 

 
Fig. 3 Force Response for LC1 case study 

 

For LC 1 the 3 DOF lumped model is subjected to 

the seismic forces for a period of 40.16 seconds and 

the resulting displacements are illustrated in Fig. 4. 
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Fig. 1. 3-DOF lumped model of the wall-type pile 
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Fig. 4 Displacement responses for LC1 case study 

 

The structural parameters for the mass, damping 

and stiffness of the 3 DOF model for the wall-type 

pile were estimated using the LS parameter 

estimation method, using as input/output data the 

seismic forces and the resulting displacements 

respectively. The input and output data used in LC 1 

was pre-filtered using the PMF approach and for the 

estimation process the real pole value for the PMF 

was chosen to be λ 543 rad/s. The filtered 

input/output signals were the successfully used to 

estimate de desired structural parameters in 

continuous-time domain. Table 3 presents the 

estimated parameters values for LC1. 

 

Table 3 Estimated parameters based on PMF 

approach for LC1 case study 

Level 

 

Mass 

[kg] 

Damping 

[Ns/m] 

Stiffness 

[N/m] 

1 2.691E+04 5.478E+05 6.970E+09 

  

1.937E+05 8.712E+08 

2 2.691E+04 1.936E+05 8.710E+08 

  

1.872E+06 6.972E+09 

3 3.138E+05 1.871E+06 6.969E+09 

 

For Load Case 2 LC2, the wall-type pile system is 

excited by the seismic force corresponding to NS 

direction, and the input forces corresponding to each 

mass can be visualized in Fig. 5. 

 

 
Fig. 5 Responses of forces for LC2 case study 

 

The displacement response of the 3 DOF lumped 

model is determined by applying the seismic forces 

from LC2 for a period of 40.16 seconds, and can be 

seen in Fig. 6. 

 

 
Fig. 6. Displacement responses of the system for LC2 case 

study 

 

For estimating the structural parameters in LC 2 

the chosen real pole value for PMF was λ of 2002 

rad/s. The estimate values for the mass, damping and 

stiffness parameters of the 3-DOF lumped model for 

LC2 can be seen in Table 4. 

 

Table 4 Estimated parameters based on PMF 

approach for LC2 case study 

Level 

 

Mass 

[kg] 

Damping 

[Ns/m] 

Stiffness 

[N/m] 

1 2.691E+04 5.478E+05 6.970E+09 

  

1.937E+05 8.712E+08 

2 2.691E+04 1.938E+05 8.713E+08 

  

1.871E+06 6.970E+09 

3 3.138E+05 1.871E+06 6.970E+09 

 

For both load cases the estimated parameter 

values for mass, damping and stiffness using the PMF 

approach converge to relative close values to the 

benchmark parameters presented in Table 2. 
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5. Conclusions 

The values for the estimated parameters of the 

lumped model with 3-DOFs in the continuous-time 

domain subjected to a seismic excitation force were 

successfully determined and with a close convergence 

to the real structural parameter values. 

The adopted PMF approach for pre-filtering the 

input/output signals is a viable method for 

continuous-time parameter estimation. This approach 

greatly minimizes the calculus of differential 

equations, and this is achieved by reducing them to 

algebraic equations. 

This continuous-time models could prove to be 

useful in the health diagnosis procedure of bridge 

structures. Changes in parameter values can be 

detected using the continuous-time model and these 

can further be used to determine the performance of 

the overall system. This can have a great impact in 

the decision making process as it can help maintain a 

bridges operational function under hazardous seismic 

events. 
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